Negative Coulomb Drag in Double Bilayer Graphene.

نویسندگان

  • J I A Li
  • T Taniguchi
  • K Watanabe
  • J Hone
  • A Levchenko
  • C R Dean
چکیده

We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coulomb drag between massless and massive fermions

We theoretically investigate the frictional drag induced by the Coulomb interaction between spatially separated massless and massive fermions in the Boltzmann regime and at low temperatures. As a model system, we use a double-layer structure composed of a two-dimensional electron gas (2DEG) and an n-doped graphene layer. We analyze this system numerically and also present analytical formulas fo...

متن کامل

Quantum Hall Drag of Exciton Superfluid in Graphene

Excitons are pairs of electrons and holes bound together by the Coulomb interaction. At low temperatures, excitons can form a Bose-Einstein condensate (BEC), enabling macroscopic phase coherence and superfluidity1,2. An electronic double layer (EDL), in which two parallel conducting layers are separated by an insulator, is an ideal platform to realize a stable exciton BEC. In an EDL under stron...

متن کامل

Coulomb drag in graphene near the Dirac point.

We study Coulomb drag in graphene near the Dirac point, focusing on the regime of interaction-dominated transport. We establish a novel, graphene-specific mechanism of Coulomb drag based on fast interlayer thermalization, inaccessible by standard perturbative approaches. Using the quantum kinetic equation framework, we derive a hydrodynamic description of transport in double-layer graphene in t...

متن کامل

Transport studies in graphene-based materials and structures

Hu, Jiuning Ph.D., Purdue University, May 2015. Transport studies in graphenebased materials and structures. Major Professor: Yong P. Chen. Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some the...

متن کامل

Theory of Coulomb drag in graphene

We study the Coulomb drag between two single graphene sheets in intrinsic and extrinsic graphene systems with no interlayer tunneling. The general expression for the nonlinear susceptibility appropriate for single-layer graphene systems is derived using the diagrammatic perturbation theory, and the corresponding exact zerotemperature expression is obtained analytically. We find that, despite th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 117 4  شماره 

صفحات  -

تاریخ انتشار 2016